Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.074
Filtrar
1.
J Agric Food Chem ; 72(15): 8606-8617, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38581395

RESUMEN

Peptide IRW is the first food-derived angiotensin-converting enzyme 2 (ACE2) upregulator. This study aimed to investigate the pharmacokinetic characteristics of IRW and identify the metabolites contributing to its antihypertensive activity in spontaneously hypertensive rats (SHRs). Rats were administered 100 mg of IRW/kg of the body weight via an intragastric or intravenous route. The bioavailability (F %) was determined to be 11.7%, and the half-lives were 7.9 ± 0.5 and 28.5 ± 6.8 min for gavage and injection, respectively. Interestingly, significant blood pressure reduction was not observed until 1.5 h post oral administration, or 2 h post injection, indicating that the peptide's metabolites are likely responsible for the blood pressure-lowering activity. Time-course metabolomics revealed a significant increase in the level of kynurenine, a tryptophan metabolite, in blood after IRW administration. Kynurenine increased the level of ACE2 in cells. Oral administration of tryptophan (W), but not dipeptide IR, lowered the blood pressure and upregulated aortic ACE2 in SHRs. Our study supports the key role of tryptophan and its metabolite, kynurenine, in IRW's blood pressure-lowering effects.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Hipertensión , Ratas , Animales , Ratas Endogámicas SHR , Enzima Convertidora de Angiotensina 2/metabolismo , Disponibilidad Biológica , Quinurenina/metabolismo , Quinurenina/farmacología , Triptófano/metabolismo , Péptidos/metabolismo , Antihipertensivos/farmacología , Presión Sanguínea , Hipertensión/metabolismo , Peptidil-Dipeptidasa A/metabolismo
2.
Viruses ; 16(3)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38543820

RESUMEN

Acute acalculous cholecystitis (AAC) represents cholecystitis without gallstones, occurring in approximately 5-10% of all cases of acute cholecystitis in adults. Several risk factors have been recognized, while infectious diseases can be a cause of cholecystitis in otherwise healthy people. Coronavirus disease 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and has spread worldwide, leading to an unprecedented pandemic. The virus enters cells through the binding of the spike protein to angiotensin-converting enzyme 2 (ACE2) receptors expressed in many human tissues, including the epithelial cells of the gastrointestinal (GI) tract, and this explains the symptoms emanating from the digestive system. Acute cholecystitis has been reported in patients with COVID-19. The purpose of this review is to provide a detailed analysis of the current literature on the pathogenesis, diagnosis, management, and outcomes of AAC in patients with COVID-19.


Asunto(s)
Colecistitis Alitiásica , COVID-19 , Colecistitis Aguda , Colecistitis , Adulto , Humanos , SARS-CoV-2/metabolismo , Colecistitis Alitiásica/diagnóstico , Peptidil-Dipeptidasa A/metabolismo
3.
Cells ; 13(5)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38474396

RESUMEN

The pathologic consequences of Coronavirus Disease-2019 (COVID-19) include elevated inflammation and dysregulated vascular functions associated with thrombosis. In general, disruption of vascular homeostasis and ensuing prothrombotic events are driven by activated platelets, monocytes, and macrophages, which form aggregates (thrombi) attached to the endothelium lining of vessel walls. However, molecular pathways underpinning the pathological interactions between myeloid cells and endothelium during COVID-19 remain undefined. Here, we tested the hypothesis that modulations in the expression of cellular receptors angiotensin-converting enzyme 2 (ACE2), CD147, and glucose-regulated protein 78 (GRP78), which are involved in homeostasis and endothelial performance, are the hallmark responses induced by SARS-CoV-2 infection. Cultured macrophages and lungs of hamster model systems were used to test this hypothesis. The results indicate that while macrophages and endothelial cells are less likely to support SARS-CoV-2 proliferation, these cells may readily respond to inflammatory stimuli generated by the infected lung epithelium. SARS-CoV-2 induced modulations of tested cellular receptors correlated with corresponding changes in the mRNA expression of coagulation cascade regulators and endothelial integrity components in infected hamster lungs. Among these markers, tissue factor (TF) had the best correlation for prothrombotic events during SARS-CoV-2 infection. Furthermore, the single-molecule fluorescence in situ hybridization (smFISH) method alone was sufficient to determine the peak and resolution phases of SARS-CoV-2 infection and enabled screening for cellular markers co-expressed with the virus. These findings suggest possible molecular pathways for exploration of novel drugs capable of blocking the prothrombotic shift events that exacerbate COVID-19 pathophysiology and control the disease.


Asunto(s)
COVID-19 , Trombosis , Humanos , COVID-19/patología , SARS-CoV-2/metabolismo , Enzima Convertidora de Angiotensina 2 , Chaperón BiP del Retículo Endoplásmico , Células Endoteliales/metabolismo , Hibridación Fluorescente in Situ , Peptidil-Dipeptidasa A/metabolismo , Pulmón/metabolismo , Trombosis/patología , Endotelio/metabolismo , Homeostasis
4.
Food Chem ; 447: 138873, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38452536

RESUMEN

Food-derived angiotensin-converting enzyme-inhibitory (ACE-I) peptides have attracted extensive attention. Herein, the ACE-I peptides from Scomber japonicus muscle hydrolysates were screened, and their mechanisms of action and inhibition stability were explored. The quantitative structure-activity relationship (QSAR) model based on 5z-scale metrics was developed to rapidly screen for ACE-I peptides. Two novel potential ACE-I peptides (LTPFT, PLITT) were predicted through this model coupled with in silico screening, of which PLITT had the highest activity (IC50: 48.73 ± 7.59 µM). PLITT inhibited ACE activity with a mixture of non-competitive and competitive mechanisms, and this inhibition mainly contributed to the hydrogen bonding based on molecular docking study. PLITT is stable under high temperatures, pH, glucose, and NaCl. The zinc ions (Zn2+) and copper ions (Cu2+) enhanced ACE-I activity. The study suggests that the QSAR model is effective in rapidly screening for ACE-I inhibitors, and PLITT can be supplemented in foods to lower blood pressure.


Asunto(s)
Hidrolisados de Proteína , Relación Estructura-Actividad Cuantitativa , Simulación del Acoplamiento Molecular , Hidrolisados de Proteína/farmacología , Hidrolisados de Proteína/química , Péptidos/farmacología , Péptidos/química , Músculos/metabolismo , Iones , Angiotensinas , Peptidil-Dipeptidasa A/metabolismo
5.
Int Immunopharmacol ; 131: 111855, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38493697

RESUMEN

Mechanical ventilation (MV) is an essential therapy for acute respiratory distress syndrome (ARDS) and pulmonary fibrosis. However, it can also induce mechanical ventilation-induced pulmonary fibrosis (MVPF) and the underlying mechanism remains unknown. Based on a mouse model of MVPF, the present study aimed to explore the role of the angiotensin-converting enzyme/angiotensin II/angiotensin type 1 receptor (ACE/Ang-2/AT1R) axis in the process of MVPF. In addition, recombinant angiotensin-converting enzyme 2(rACE2), AT1R inhibitor valsartan, AGTR1-directed shRNA and ACE inhibitor perindopril were applied to verify the effect of inhibiting ACE/Ang-2/AT1R axis in the treatment of MVPF. Our study found MV induced an inflammatory reaction and collagen deposition in mouse lung tissue accompanied by the activation of ACE in lung tissue, increased concentration of Ang-2 in bronchoalveolar lavage fluid (BALF), and upregulation of AT1R in alveolar epithelial cells. The process of pulmonary fibrosis could be alleviated by the application of the ACE inhibitor perindopril, ATIR inhibitor valsartan and AGTR1-directed shRNA. Meanwhile, rACE2 could also alleviate MVPF through the degradation of Ang-2. Our finding indicated the ACE/Ang-2/AT1R axis played an essential role in the pathogenesis of MVPF. Pharmacological inhibition of the ACE/Ang-2/AT1R axis might be a promising strategy for the treatment of MVPF.


Asunto(s)
Fibrosis Pulmonar , Ratones , Animales , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/patología , Receptor de Angiotensina Tipo 1/metabolismo , Peptidil-Dipeptidasa A/metabolismo , Perindopril/farmacología , Perindopril/uso terapéutico , Respiración Artificial , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Valsartán/uso terapéutico , ARN Interferente Pequeño/genética , Angiotensina II/metabolismo
6.
Physiol Res ; 73(1): 27-35, 2024 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-38466002

RESUMEN

Angiotensin-converting enzyme 2 (ACE2), one of the key enzymes of the renin-angiotensin system (RAS), plays an important role in SARS-CoV-2 infection by functioning as a virus receptor. Angiotensin peptides Ang I and Ang II, the substrates of ACE2, can modulate the binding of SARS-CoV-2 Spike protein to the ACE2 receptor. In the present work, we found that co incubation of HEK-ACE2 and Vero E6 cells with the SARS-CoV-2 Spike pseudovirus (PVP) resulted in stimulation of the virus entry at low and high micromolar concentrations of Ang I and Ang II, respectively. The potency of Ang I and Ang II stimulation of virus entry corresponds to their binding affinity to ACE2 catalytic pocket with 10 times higher efficiency of Ang II. The Ang II induced mild increase of PVP infectivity at 20 microM; while at 100 microM the increase (129.74+/-3.99 %) was highly significant (p<0.001). Since the angiotensin peptides act in HEK ACE2 cells without the involvement of angiotensin type I receptors, we hypothesize that there is a steric interaction between the catalytic pocket of the ACE2 enzyme and the SARS-CoV-2 S1 binding domain. Oversaturation of the ACE2 with their angiotensin substrate might result in increased binding and entry of the SARS-CoV-2. In addition, the analysis of angiotensin peptides metabolism showed decreased ACE2 and increased ACE activity upon SARS-CoV-2 action. These effects should be taken into consideration in COVID-19 patients suffering from comorbidities such as the over-activated renin-angiotensin system as a mechanism potentially influencing the SARS-CoV-2 invasion into recipient cells.


Asunto(s)
COVID-19 , Sistema Renina-Angiotensina , Glicoproteína de la Espiga del Coronavirus , Humanos , SARS-CoV-2/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Angiotensina I/metabolismo , Angiotensina I/farmacología , Peptidil-Dipeptidasa A/metabolismo , Inhibidores de la Enzima Convertidora de Angiotensina , Angiotensina II/metabolismo
7.
Sci Rep ; 14(1): 5846, 2024 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-38462662

RESUMEN

The expression of ACE2 is linked to disease severity in COVID-19 patients. The ACE2 receptor gene polymorphisms are considered determinants for SARS-CoV-2 infection and its outcome. In our study, serum ACE2 and its genetic variant S19P rs73635825 polymorphism were investigated in 114 SARS-CoV-2 patients. The results were compared with 120 control subjects. ELISA technique and allele discrimination assay were used for measuring serum ACE2 and genotype analysis of ACE2 rs73635825. Our results revealed that serum ACE2 was significantly lower in SARS-CoV-2 patients (p = 0.0001), particularly in cases with hypertension or diabetes mellitus. There was a significant difference in the genotype distributions of ACE2 rs73635825 A > G between COVID-19 patients and controls (p-value = 0.001). A higher frequency of the heterozygous AG genotype (65.8%) was reported in COVID-19 patients. The G allele was significantly more common in COVID-19 patients (p < 0.0001). The AG and GG genotypes were associated with COVID-19 severity as they were correlated with abnormal laboratory findings, GGO, CXR, and total severity scores with p < 0.05. Our results revealed that the ACE2 S19P gene variant is correlated with the incidence of infection and its severity, suggesting the usefulness of this work in identifying the susceptible population groups for better disease control.


Asunto(s)
COVID-19 , Humanos , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/genética , Egipto/epidemiología , Gravedad del Paciente , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo , Polimorfismo Genético , SARS-CoV-2/metabolismo
8.
World J Gastroenterol ; 30(6): 607-609, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38463024

RESUMEN

The present letter to the editor is related to the study titled 'Angiotensin-converting enzyme 2 improves liver fibrosis in mice by regulating autophagy of hepatic stellate cells'. Angiotensin-converting enzyme 2 can alleviate liver fibrosis by regulating autophagy of hepatic stellate cells and affecting the renin-angiotensin system.


Asunto(s)
Peptidil-Dipeptidasa A , Sistema Renina-Angiotensina , Animales , Ratones , Angiotensina II/metabolismo , Enzima Convertidora de Angiotensina 2 , Fibrosis , Células Estrelladas Hepáticas/metabolismo , Cirrosis Hepática , Peptidil-Dipeptidasa A/metabolismo
9.
Int J Mol Sci ; 25(5)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38474055

RESUMEN

Angiotensin-converting enzyme (ACE) plays a crucial role in the pathogenesis of hypertension. Piper sarmentosum Roxb., an herb known for its antihypertensive effect, lacks a comprehensive understanding of the mechanism underlying its antihypertensive action. This study aimed to elucidate the antihypertensive mechanism of aqueous extract of P. sarmentosum leaves (AEPS) via its modulation of the ACE pathway in phorbol 12-myristate-13-acetate (PMA)-induced human umbilical vein endothelial cells (HUVECs). HUVECs were divided into five groups: control, treatment with 200 µg/mL AEPS, induction 200 nM PMA, concomitant treatment with 200 nM PMA and 200 µg/mL AEPS, and treatment with 200 nM PMA and 0.06 µM captopril. Subsequently, ACE mRNA expression, protein level and activity, angiotensin II (Ang II) levels, and angiotensin II type 1 receptor (AT1R) and angiotensin II type 2 receptor (AT2R) mRNA expression in HUVECs were determined. AEPS successfully inhibited ACE mRNA expression, protein and activity, and angiotensin II levels in PMA-induced HUVECs. Additionally, AT1R expression was downregulated, whereas AT2R expression was upregulated. In conclusion, AEPS reduces the levels of ACE mRNA, protein and activity, Ang II, and AT1R expression in PMA-induced HUVECs. Thus, AEPS has the potential to be developed as an ACE inhibitor in the future.


Asunto(s)
Forboles , Piper , Humanos , Antihipertensivos/farmacología , Miristatos/metabolismo , Miristatos/farmacología , Angiotensina II/metabolismo , Células Endoteliales/metabolismo , Células Cultivadas , Peptidil-Dipeptidasa A/metabolismo , Receptor de Angiotensina Tipo 1/metabolismo , ARN Mensajero/metabolismo , Acetatos/farmacología , Forboles/metabolismo , Forboles/farmacología
10.
Molecules ; 29(5)2024 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-38474646

RESUMEN

Food-derived angiotensin-I-converting enzyme (ACE)-inhibitory peptides have gained attention for their potent and safe treatment of hypertensive disorders. However, there are some limitations of conventional methods for preparing ACE-inhibitory peptides. In this study, in silico hydrolysis, the quantitative structure-activity relationship (QSAR) model, LC-MS/MS, inhibition kinetics, and molecular docking were used to investigate the stability, hydrolyzability, in vitro activity, and inhibition mechanism of bioactive peptides during the actual hydrolysis process. Six novel ACE-inhibitory peptides were screened from the Larimichthys crocea protein (LCP) and had low IC50 values (from 0.63 ± 0.09 µM to 10.26 ± 0.21 µM), which were close to the results of the QSAR model. After in vitro gastrointestinal simulated digestion activity of IPYADFK, FYEPFM and NWPWMK were found to remain almost unchanged, whereas LYDHLGK, INEMLDTK, and IHFGTTGK were affected by gastrointestinal digestion. Meanwhile, the inhibition kinetics and molecular docking results were consistent in that ACE-inhibitory peptides of different inhibition forms could effectively bind to the active or non-central active centers of ACE through hydrogen bonding. Our proposed method has better reproducibility, accuracy, and higher directivity than previous methods. This study can provide new approaches for the deep processing, identification, and preparation of Larimichthys crocea.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina , Peptidil-Dipeptidasa A , Inhibidores de la Enzima Convertidora de Angiotensina/química , Simulación del Acoplamiento Molecular , Peptidil-Dipeptidasa A/metabolismo , Cromatografía Liquida , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem , Péptidos/química , Angiotensinas
11.
J Virol ; 98(3): e0180223, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38334329

RESUMEN

With a high incidence of acute kidney injury among hospitalized COVID-19 patients, considerable attention has been focussed on whether SARS-CoV-2 specifically targets kidney cells to directly impact renal function, or whether renal damage is primarily an indirect outcome. To date, several studies have utilized kidney organoids to understand the pathogenesis of COVID-19, revealing the ability for SARS-CoV-2 to predominantly infect cells of the proximal tubule (PT), with reduced infectivity following administration of soluble ACE2. However, the immaturity of standard human kidney organoids represents a significant hurdle, leaving the preferred SARS-CoV-2 processing pathway, existence of alternate viral receptors, and the effect of common hypertensive medications on the expression of ACE2 in the context of SARS-CoV-2 exposure incompletely understood. Utilizing a novel kidney organoid model with enhanced PT maturity, genetic- and drug-mediated inhibition of viral entry and processing factors confirmed the requirement for ACE2 for SARS-CoV-2 entry but showed that the virus can utilize dual viral spike protein processing pathways downstream of ACE2 receptor binding. These include TMPRSS- and CTSL/CTSB-mediated non-endosomal and endocytic pathways, with TMPRSS10 likely playing a more significant role in the non-endosomal pathway in renal cells than TMPRSS2. Finally, treatment with the antihypertensive ACE inhibitor, lisinopril, showed negligible impact on receptor expression or susceptibility of renal cells to infection. This study represents the first in-depth characterization of viral entry in stem cell-derived human kidney organoids with enhanced PTs, providing deeper insight into the renal implications of the ongoing COVID-19 pandemic. IMPORTANCE: Utilizing a human iPSC-derived kidney organoid model with improved proximal tubule (PT) maturity, we identified the mechanism of SARS-CoV-2 entry in renal cells, confirming ACE2 as the sole receptor and revealing redundancy in downstream cell surface TMPRSS- and endocytic Cathepsin-mediated pathways. In addition, these data address the implications of SARS-CoV-2 exposure in the setting of the commonly prescribed ACE-inhibitor, lisinopril, confirming its negligible impact on infection of kidney cells. Taken together, these results provide valuable insight into the mechanism of viral infection in the human kidney.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Riñón , Organoides , SARS-CoV-2 , Internalización del Virus , Humanos , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/complicaciones , COVID-19/virología , Riñón/citología , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/virología , Lisinopril/farmacología , Lisinopril/metabolismo , Organoides/citología , Organoides/efectos de los fármacos , Organoides/metabolismo , Organoides/virología , Pandemias , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus/efectos de los fármacos , Peptidil-Dipeptidasa A/metabolismo , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Lesión Renal Aguda/etiología , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/virología , Túbulos Renales Proximales/citología , Túbulos Renales Proximales/efectos de los fármacos , Túbulos Renales Proximales/metabolismo , Túbulos Renales Proximales/virología , Receptores de Coronavirus/metabolismo , Modelos Biológicos , Serina Endopeptidasas/metabolismo , Endosomas/efectos de los fármacos , Endosomas/metabolismo , Endosomas/virología , Regulación de la Expresión Génica/efectos de los fármacos , Células Madre/citología
12.
Infect Genet Evol ; 119: 105568, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38367677

RESUMEN

Genetic variations in the human angiotensin converting enzyme gene (ACE) influence ACE enzyme expression levels in humans and subsequently influence both communicable and non-communicable disease outcomes. More recently, polymorphisms in this gene have been linked to susceptibility and outcomes of infectious diseases such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and malaria infections. This study is the first to investigate the genetic diversity of ACE and ACE2 polymorphisms in the Ghanaian population. Archived filter blood blot samples from malaria patients aged ≤9 years were used. Molecular analysis for the detection of ACE rs4646994 (I/D), ACE2 rs2106809 (C/T) and rs2285666 (G/A) alleles as well as ACE2 exons 1-4 polymorphisms was conducted on 300 samples. The D allele (54%,162/300) was the most dominant polymorphism observed in the ACE rs4646994 gene whilst the G (68%, 204/300) and T alleles (59.3%,178/300) were the most frequent ACE2 rs2285666 and rs2106809 polymorphisms observed. For the 300 samples sequenced for ACE2 exons 1-4, analyses were done on 268, 282 and 137 quality sequences for exons 1, 2 and 3-4 respectively. For exon 1, the mutation D38N (2.2%; 6/268) was the most prevalent. The S19P and E37K mutations previously reported to influence COVID-19 infections were observed at low frequencies (0.4%, 1/268 each). No mutations were observed in exon 2. The N121K/T variants were the most seen in exons 3-4 at frequencies of 5.1% (K121, 7/137) and 2.9% (T121, 4/137) respectively. Most of the variants observed in the exons were novel compared to those reported in other populations in the world. This is the first study to investigate the genetic diversity of ACE and ACE2 genes in Ghanaians. The observation of novel mutations in the ACE2 gene is suggesting selection pressure. The importance of the mutations for communicable and non-communicable diseases (malaria and COVID-19) are further discussed.


Asunto(s)
COVID-19 , Malaria , Humanos , Enzima Convertidora de Angiotensina 2/genética , COVID-19/epidemiología , COVID-19/genética , Ghana/epidemiología , Malaria/epidemiología , Malaria/genética , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo
13.
Eur J Pharmacol ; 971: 176392, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38365107

RESUMEN

The excessive elevation of angiotensin II (ANG II) is closely associated with the occurrence and development of aortic dissection (AD)-related acute lung injury (ALI), through its binding to angiotensin II receptor type I (AT1R). MiR-145-5p is a noncoding RNA that can be involved in a variety of cellular physiopathological processes. Transfection with miR-145-5p was found to downregulated the expression of A disintegrin and metalloprotease 17 (ADAM17) and reduced the levels of angiotensin-converting enzyme 2 (ACE2) in lung tissue, while concurrently increasing plasma ACE2 levels in the AD combined with ALI mice. ADAM17 was proved to be a target of miR-145-5p. Transfection with miR-145-5p decreased the shedding of ACE2 and alleviated the inflammatory response induced by ANG II through targeting ADAM17 and inhibiting the AT1R/ADAM17 pathway in A549 cells. In conclusion, our present study demonstrates the role and mechanism of miR-145-5p in alleviating ANG II-induced acute lung injury, providing a new insight into miRNA therapy for reducing lung injury in patients with aortic dissection.


Asunto(s)
Lesión Pulmonar Aguda , Disección Aórtica , MicroARNs , Humanos , Animales , Ratones , Enzima Convertidora de Angiotensina 2/genética , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo , Células Epiteliales Alveolares/metabolismo , Proteína ADAM17/genética , Angiotensina II/farmacología , Angiotensina II/metabolismo , MicroARNs/genética , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/genética , Lesión Pulmonar Aguda/metabolismo
14.
Meat Sci ; 212: 109472, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38422590

RESUMEN

The aim of this study was to assess whether ultrasound treatment (sonification time: 5, 15, and 30 min; constants: ∼40 kHz, ∼2.5 W cm2) can be applied prior to hydrolysis to enhance the anti-radical and angiotensin converting enzyme inhibiting (anti-ACE) effect of the hydrolysates from fermented pork loins. Enzymatic hydrolysis was performed using pepsin, followed by pancreatin. The influence of meat matrix on the course of hydrolysis, shaped using a lactic acid bacteria (LAB)-based starter culture, was also analyzed. It was found that proteases caused a systematic increase in the content of peptides, while pancreatin limited the peptide content in the protein hydrolysate from the loins subjected to spontaneous fermentation. Moreover, for these tests, sonication time had a negligible effect on the peptides content of the hydrolysates. On the other hand, for the sample of LAB-fermented products, both sonication time and stage of hydrolysis promoted the biological activity of the hydrolysates. Samples from the LAB-fermented meat had more peptides at the stage of digestion with pepsin and pancreatin, exhibiting much faster antiradical and anti-ACE activity compared to the control sample. The obtained results suggest that the use of LAB promotes the release of antiradical peptides during the two-step enzymatic hydrolysis, the duration of which can be shortened to achieve satisfactory biofunctionalities. Additional application of sonication pretreatment allows controlling the course of the hydrolysis, as the pro-health, biological effect of some protein-derived sequences is associated with the content of peptides.


Asunto(s)
Lactobacillales , Carne de Cerdo , Carne Roja , Animales , Porcinos , Peptidil-Dipeptidasa A/metabolismo , Hidrolisados de Proteína/química , Pepsina A , Pancreatina/metabolismo , Sonicación , Péptidos/química , Hidrólisis , Lactobacillales/metabolismo
15.
Int J Biol Macromol ; 262(Pt 1): 129811, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38302018

RESUMEN

Effects of fermentation by Lactobacillus Plantarum NCU116 on the antihypertensive potential of black sesame seed (BSS) and structure characteristics of fermented black sesame seed protein (FBSSP) were investigated. Angiotensin-I-converting enzyme (ACE) inhibition and zinc chelating ability of fermented black sesame seed hydrolysate (FBSSH) reached the highest of 60.78 ± 3.67 % and 2.93 ± 0.04 mg/mL at 48 h and 60 h of fermentation, respectively. Additionally, the antioxidant activities of FBSSH and surface hydrophobicity of FBSSP were increased noticeably by fermentation. The α-helix and ß-rotation of FBSSP tended to decrease and increase, respectively, during fermentation. Correlation analysis indicated strong positive relationships between ß-turn and ACE inhibition activity as well as zinc chelating ability with correlation coefficients r of 0.8976 and 0.8932. Importantly, novel ACE inhibitory peptides LLLPYY (IC50 = 12.20 µM) and ALIPSF (IC50 = 558.99 µM) were screened from FBSSH at 48 h using in silico method. Both peptides showed high antioxidant activities in vitro. Molecular docking analysis demonstrated that the hydrogen bond connected with zinc ions of ACE mainly attributed to the potent ACE inhibitory activity of LLLPYY. The findings indicated that fermentation by Lactobacillus Plantarum NCU116 is an effective method to enhance the antihypertensive potential of BSS.


Asunto(s)
Lactobacillus plantarum , Sesamum , Antihipertensivos/farmacología , Lactobacillus plantarum/metabolismo , Fermentación , Inhibidores de la Enzima Convertidora de Angiotensina/química , Antioxidantes/farmacología , Antioxidantes/metabolismo , Simulación del Acoplamiento Molecular , Péptidos/química , Zinc/metabolismo , Peptidil-Dipeptidasa A/metabolismo
16.
Cells ; 13(3)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38334597

RESUMEN

Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) utilizes angiotensin-converting enzyme 2 (ACE2) as its main receptor for cell entry. We bioengineered a soluble ACE2 protein termed ACE2 618-DDC-ABD that has increased binding to SARS-CoV-2 and prolonged duration of action. Here, we investigated the protective effect of this protein when administered intranasally to k18-hACE2 mice infected with the aggressive SARS-CoV-2 Delta variant. k18-hACE2 mice were infected with the SARS-CoV-2 Delta variant by inoculation of a lethal dose (2 × 104 PFU). ACE2 618-DDC-ABD (10 mg/kg) or PBS was administered intranasally six hours prior and 24 and 48 h post-viral inoculation. All animals in the PBS control group succumbed to the disease on day seven post-infection (0% survival), whereas, in contrast, there was only one casualty in the group that received ACE2 618-DDC-ABD (90% survival). Mice in the ACE2 618-DDC-ABD group had minimal disease as assessed using a clinical score and stable weight, and both brain and lung viral titers were markedly reduced. These findings demonstrate the efficacy of a bioengineered soluble ACE2 decoy with an extended duration of action in protecting against the aggressive Delta SARS-CoV-2 variant. Together with previous work, these findings underline the universal protective potential against current and future emerging SARS-CoV-2 variants.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Melfalán , gammaglobulinas , Humanos , Ratones , Animales , Peptidil-Dipeptidasa A/metabolismo , SARS-CoV-2/metabolismo
17.
Hypertension ; 81(5): 964-976, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38362781

RESUMEN

The renin-angiotensin system is the most important peptide hormone system in the regulation of cardiovascular homeostasis. Its classical arm consists of the enzymes, renin, and angiotensin-converting enzyme, generating angiotensin II from angiotensinogen, which activates its AT1 receptor, thereby increasing blood pressure, retaining salt and water, and inducing cardiovascular hypertrophy and fibrosis. However, angiotensin II can also activate a second receptor, the AT2 receptor. Moreover, the removal of the C-terminal phenylalanine from angiotensin II by ACE2 (angiotensin-converting enzyme 2) yields angiotensin-(1-7), and this peptide interacts with its receptor Mas. When the aminoterminal Asp of angiotensin-(1-7) is decarboxylated, alamandine is generated, which activates the Mas-related G-protein-coupled receptor D, MrgD (Mas-related G-protein-coupled receptor type D). Since Mas, MrgD, and the AT2 receptor have opposing effects to the classical AT1 receptor, they and the enzymes and peptides activating them are called the alternative or protective arm of the renin-angiotensin system. This review will cover the historical aspects and the current standing of this recent addition to the biology of the renin-angiotensin system.


Asunto(s)
Angiotensina II , Sistema Renina-Angiotensina , Sistema Renina-Angiotensina/fisiología , Peptidil-Dipeptidasa A/metabolismo , Péptidos , Angiotensina I/metabolismo , Fragmentos de Péptidos/metabolismo , Renina , Receptores Acoplados a Proteínas G/metabolismo
18.
Free Radic Biol Med ; 214: 206-218, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38369076

RESUMEN

Benzoylaconitine is a natural product in the treatment of cardiovascular disease. However, its pharmacological effect, direct target protein, and molecular mechanisms for the treatment of heart failure are unclear. In this study, benzoylaconitine inhibited Ang II-induced cell hypertrophy and fibrosis in rat primary cardiomyocytes and rat fibroblasts, while attenuating cardiac function and cardiac remodeling in TAC mice. Using the limited proteolysis-mass spectrometry (LiP-MS) method, the angiotensin-converting enzyme 2 (ACE2) was confirmed as a direct binding target of benzoylaconitine for the treatment of heart failure. In ACE2-knockdown cells and ACE2-/- mice, benzoylaconitine failed to ameliorate cardiomyocyte hypertrophy, fibrosis, and heart failure. Online RNA-sequence analysis indicated p38/ERK-mediated mitochondrial reactive oxygen species (ROS) and nuclear factor kappa B (NF-κB) activation are the possible downstream molecular mechanisms for the effect of BAC-ACE2 interaction. Further studies in ACE2-knockdown cells and ACE2-/- mice suggested that benzoylaconitine targeted ACE2 to suppress p38/ERK-mediated mitochondrial ROS and NF-κB pathway activation. Our findings suggest that benzoylaconitine is a promising ACE2 agonist in regulating mitochondrial ROS release and inflammation activation to improve cardiac function in the treatment of heart failure.


Asunto(s)
Aconitina/análogos & derivados , Insuficiencia Cardíaca , FN-kappa B , Ratas , Ratones , Animales , FN-kappa B/genética , FN-kappa B/metabolismo , Enzima Convertidora de Angiotensina 2/genética , Especies Reactivas de Oxígeno/metabolismo , Peptidil-Dipeptidasa A/metabolismo , Angiotensina II/metabolismo , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/genética , Miocitos Cardíacos/metabolismo , Fibrosis , Hipertrofia
19.
Mol Nutr Food Res ; 68(5): e2300524, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38356052

RESUMEN

SCOPE: This study aims to investigate the antihypertensive effect of four chicken muscle-derived angiotensin (Ang)-converting enzymes (ACE)-regulating peptides: Val-Arg-Pro (VRP, ACE inhibition), Leu-Lys-Tyr and Val-Arg-Tyr (LKY and VRY, ACE inhibition and ACE2 upregulation), and Val-Val-His-Pro-Lys-Glu-Ser-Phe (VVHPKESF [V-F], ACE2 upregulation) in spontaneously hypertensive rats. METHODS AND RESULTS: Rats (12-14 weeks old) are grouped: 1) untreated, 2) VRP, 3) LKY, 4) VRY, and 5) V-F. Blood pressure (BP) is monitored using implantable telemetry technology. Over 18-day oral administration of 15 mg kg-1 body weight (BW) per day, only peptide V-F significantly (p < 0.05) reduces BP, decreases circulating Ang II, and increases ACE2 and Ang (1-7) levels, and enhances aortic expressions of ACE2 and Mas receptor (MasR). Peptide V-F also attenuates vascular inflammation (TNFα, MCP-1, IL-1α, IL-15, and cyclooxygenase 2 [COX2]) and vascular oxidative stress (nitrotyrosine). The gastrointestinal (GI)-degraded fragment of peptide V-F, Val-Val-His-Pro-Lys (VVHPK), is also an ACE2-upregulating peptide. Peptides VRP, LKY, and VRY do not reduce BP, possibly due to low bioavailability or other unknown reasons. CONCLUSIONS: Peptide V-F is the first ACE2-upregulating peptide, purified and fractionated from food proteins based on in vitro ACE2 upregulation, that reduces BP associated with the activation of ACE2/Ang (1-7)/MasR axis; the N-terminal moiety VVHPK may be responsible for the antihypertensive effect of V-F.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Pollos , Ratas , Animales , Ratas Endogámicas SHR , Presión Sanguínea , Enzima Convertidora de Angiotensina 2/farmacología , Pollos/metabolismo , Antihipertensivos/farmacología , Péptidos/farmacología , Fragmentos de Péptidos/farmacología , Fragmentos de Péptidos/metabolismo , Peptidil-Dipeptidasa A/metabolismo , Angiotensina II/farmacología , Músculos/metabolismo
20.
Peptides ; 175: 171170, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38342309

RESUMEN

Enzyme-Treated Soymilk (ETS) was produced from Commercial Soymilk (CSM) with the treatment of proteinase PROTIN SD-NY10 (Bacillus amyloliquefaciens). Previously, we have isolated novel peptides from ETS but data related to isolated-peptides are scant. In this study, bio-informatics and in vivo analysis of isolated-peptides showed strong binding affinity to the active site of the Angiotensin Converting Enzyme (ACE). Among four peptides, tetrapeptide Phe-Phe-Tyr-Tyr (FFYY) showed strong binding affinity and inhibitory activity to the ACE-enzyme (binding affinity -9.5 Kcal/mol and inhibitory concentration of 1.9 µM respectively) as well as showed less toxicity compared to other peptides. The animal experiment revealed that single oral dose of FFYY (80 µg/kg body weight/day) effectively ameliorates the systolic, diastolic and mean blood pressure in the spontaneously hypertensive rat (SHR) model. Chronic oral administration of FFYY (80 µg/kg body weight/day for 3 weeks) reduced the systolic blood pressure elevation and ACE activity without any adverse side effects on the physiological and biological parameters of SHR. In conclusion, both in silico and in vivo experiments of soymilk-isolated FFYY peptide showed a promising option as a potential alternative for hypertension treatment without adverse side effects on SHR.


Asunto(s)
Antihipertensivos , Hipertensión , Ratas , Animales , Antihipertensivos/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Inhibidores de la Enzima Convertidora de Angiotensina/química , Hipertensión/tratamiento farmacológico , Péptidos/farmacología , Péptidos/uso terapéutico , Péptidos/química , Ratas Endogámicas SHR , Peptidil-Dipeptidasa A/metabolismo , Peso Corporal , Presión Sanguínea
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...